GENERAL
The transmission internal shifter mechanism, mainshaft and countershaft groups are an integral part of the engine crankcase assembly. These groups may be serviced directly by removing the access cover from the crankcase as described in "REMOVING TRANSMISSION," thereby exposing all transmission parts for repair.

NOTE
On 1975 and 1976 models shifter linkage parts must be removed before transmission can be serviced as outlined in "1975 AND 1976 SHIFTER LINKAGE," below.

1975 AND 1976 SHIFTER LINKAGE
DISASSEMBLING, ASSEMBLING AND ADJUSTING SHIFTER PEDAL AND CROSS SHAFT MECHANISM

NOTE
The shifter pedal is located on the left side of the motorcycle and is connected through a cross shaft to the shifter mechanism on the right side.
Loosen rear exhaust pipe port clamp (6), Figure 3-4, and position out of the way. Remove front muffler. Remove right side footrest (11) along with rear brake mechanism (12A) and let hang free out of the way. Remove sprocket cover by removing two attaching screws (13), Figure 3-4.
From the left side of motorcycle, remove shifter foot pedal (1), Figure 4-19 as follows. Before removing, place a mark on splines of cross shaft (9) and pedal (1) to indicate original position for reassembly reference. Then remove screws (2). Insert screwdriver into slot as a wedge and pull pedal from cross shaft. On the right side of motorcycle, remove rear end of shifter link (6) from pin of arm (9) by removing lock ring (8). Loosen locknut (8) and unscrew pivot end (7), noting number of turns required for reassembly reference. Temporarily replace pivot end back on pin.
At this point, minor adjustments can be made by adjusting shifter link (6) as follows:
Position pedal (1) on splined shaft (9) so that it is 1/8 in. from the foot peg while at the same time adjusting pivot end (7) either in or out on shifter link (6) until cross shaft (9) is 3/16 in. from swing arm as shown in Figure 4-20.

NOTE
These dimensions should be measured on the maximum upshift motion of the shifter pedal into 4th gear.
If the dimensions specified cannot be achieved, major adjustments must be made by repositioning lever (13) on shifter shaft (16) as follows:

![Figure 4-19. Shifter Linkage Mechanism - Exploded View - 1975 and 1976](image-url)
thoroughly and reassemble remaining parts in reverse order of disassembly.

REMOVING TRANSMISSION

Place an oil drain pan under clutch and remove footrest, stoplight switch, rear brake foot pedal (1974 and earlier) or shifter pedal (1975 and later), chain case cover, clutch, front chain and compensating sprocket as described in "CLUTCH."

Remove starter crank assembly, right footrest and foot shift lever (1974 and earlier) or brake pedal (1975 and later). Loosen exhaust pipe, remove transmission sprocket cover, starter crank gear, starter clutch gear and starter crankshaft as described in "STARTER."

See Figure 4-21 and proceed as follows:

Loosen mainshaft nut (1) and disconnect rear chain by removing chain connecting link. Remove transmission mainshaft nut (1) and lockwasher (2). If mainshaft sprocket (3) is tight on shaft, use All Purpose Claw Puller to remove sprocket. To avoid tooth breakage grasp two teeth with each end of puller. Remove retainer screws (4), oil seal and retainer (5) and gasket (6).

See Figure 4-22. Remove four access cover capscrews (2). Remove access cover from crankcase with transmission parts attached to the cover (see Figure 4-24) by tapping on mainshaft end from right side of motorcycle.

This method removes the complete transmission.

An alternate method of removing the access cover is to pull it out using Access Cover Puller, Part No. 95560-57, as shown in Figure 4-23. The difference between this method and the one above is that the mainshaft remains attached to the right crankcase half. In this case, do not remove sprocket (3, Figure 4-21) from mainshaft. Attach tool and press mainshaft out of transmission as access cover is pulled away from the crankcase half.

SHIFTER MECHANISM (Figure 4-25)

To free shifter mechanism from access cover, remove mainshaft second gear (1, Figure 4-27), capscrew (1, Figure 4-25) and lock (2). With a Tru-arc Pliers remove retaining ring (3) and washer (4). Free cam (5), pawl carrier (6 or 6A), pawl carrier support (7) and pawl carrier support shims (7A) (if used). Remove pawl carrier springs (8) from pawl carrier support. On 1970-71 models, remove shifter pawls and springs (9). To disassemble 1972 and later pawl assembly remove retaining rings (9D) to free pawls, spacers and springs (9A, 9B and 9C) from pawl carrier (6A). To free shifter forks (10) and finger rollers (11), remove fork shaft (16) from access cover. Mark fork so they can be reassembled in the same position.

MAINSHAFT AND COUNTERSHAFT GROUP (Figure 4-27)

Remove mainshaft (2), thrust washer (3) and 23 rollers (4) from right crankcase. Remove low gear (5) from mainshaft splines. Pry retainer ring (6) from groove in mainshaft and discard ring. Slip washer (7) and third gear (8) from mainshaft.
Support access cover (9) on arbor press, clutch gear threaded end up. Carefully press clutch gear (10) from ball bearing (20). Remove low gear washer (11) and third gear (12) from countershaft. Press drive gear (13) from counter-shaft splines and remove gear spacer (14), second gear (15) and thrust washer (16). Free countershaft low gear (18) and low gear washer (19). Drift out oiler plug (22) from inside of access cover.

INSPECTING AND REPLACING PARTS

Thoroughly clean transmission compartment and all shifter, mainshaft and countershaft parts with cleaning solvent. Blow parts dry with compressed air and inspect to determine if any must be replaced. Replace all parts that are badly worn or damaged.

TRANSMISSION SPROCKET (Figure 4-21)

Inspect mainshaft sprocket (3) for badly worn or damaged sprocket teeth and splines. Discard gasket (6). Check oil seal and retainer (5), lockwasher (2) and mainshaft nut (1).

SHITEFR MECHANISM (Figure 4-25)

Discard gear shifter cam retaining ring (3). Carefully examine gear shifter cam (5) for grooved or worn cam slots at the various running gear positions. Excessive wear at thrust points will make the transmission difficult to shift through gear range.
On 1970-71 Models: Insert right and left pawl springs in their respective carrier (6) holes and check operation. Pawl must be free in carrier. Free length of new springs is approximately 1-7/32 in.

On 1972 and later models, check for wear or damage to pawl (9A) and carrier (6A). Free length of new spring (9B) is approximately 1-3/4 in. between hooks.

Check shifter forks (10) for bent condition or deep grooves worn into fork fingers caused by excessive thrust action of gears. Also examine both shifter forks (10) and finger rollers (11) for breakage.

Inspect shifter cam follower (12) and spring (13) for wear and damage, especially on thrust face of follower. Check movement of follower and spring in retainer (14). Free length of new spring is approximately 1-19/32 in.

Check shaft (16) for bent or damaged condition by slipping shifter forks on shaft and noting if they have free movement on shaft.

Inspect gear shifter lever arm shaft (17) for wear or bent condition. Shaft must work freely in bushings. Remove any high spots from bushings with a half inch reamer. To ensure against oil leakage, replace oil seal (19) when reassembling.

MAINSHAFT AND COUNTERSHAFT GROUP
(Figure 4-27)

Inspect gears for badly battered, chipped or rounded dogs and slots at all thrust points. This condition will be evidenced by transmission jumping out of gear. Examine gear teeth for pitting, scoring, cracked, chipped condition or case hardening worn through. Inspect mainshaft, countershaft and all gears for pitting, grooving and excessive wear on bearing surfaces. Slip gears on shafts and check for wear and appreciable play. If not within specification limits as given in transmission "SPECIFICATIONS," replace worn parts.

To replace low gear bushing (23), press old bushing out and new bushing in. To replace clutch gear bushing (27) and needle roller bearing (28), first remove extension (26) with vise grip pliers. Drift bushing (27) from gear. Drift needle roller bearing (28) and washer (29) from opposite end of gear. Press new bushing into clutch gear shaft. Insert mainshaft in clutch gear and check to be sure shaft is .001 to .002 in. loose in gear. New bushing may close up and require reaming to size. Use Reamer, Part No. 94829-42, for this operation. Install needle roller bearing and spacer, pressing on printed side of bearing only.

On 1970 models, assemble extension to end of clutch gear using aluminum paint as a sealer. Install new oil seal and hub nut O-ring.

Position mainshaft and then countershaft in flywheel truing device. Rotate shafts and with a dial indicator check shafts for bent condition. Shafts that are .003 in. or more out of true must be replaced.

Inspect mainshaft ball bearing (20). Tolerances of clutch gear in ball bearing and ball bearing in access cover are given in transmission "SPECIFICATIONS." If bearing is not within specification limits or is worn to the extent that it has appreciable play or shake, replace it.

Note: Do not use cadmium plated, 14-coil pawl carrier springs. Use only cadmium plated, 16-coil springs or black phosphatized springs, 14 or 16-coil, when reassembling pawl carrier support.

Examine shifter pawls (9 or 9A) for wear, grooves, cracks or breakage.

Figure 4-24. Transmission Access Cover Removed (1970-71 Model Shown)
1. Cam capscrew
2. Capscrew lock
3. Cam retaining ring
4. Camshaft thrust washer
5. Gear shifter cam
6A. Pawl carrier (1972 and later)
7. Pawl carrier support
7A. Shim (.010 thick) as required
8. Pawl carrier springs (2)
9A. Pawl (2) (1972 and later)
9B. Pawl spring (1972 and later)
9C. Pawl spacer (2) (1972 and later)
9D. Pawl retaining ring (2) (1972 and later)
10. Gear shifter forks (2) (variable)
11. Finger rollers (2)
12. Cam follower
13. Cam follower spring
14. Cam follower retainer
15. Cam follower retainer lock
16. Fork shaft
17. Lever arm shaft (1976 and earlier)
18. Shifter shaft bushings (2)
19. Shifter shaft oil seal
20. Lever arm shaft (1977 and later)
21. Thrust washer (1977 and later)
22. Bushing (1977 and later)
23. Seal (1977 and later)

Figure 4-25. Shifting Mechanism - Exploded View

To remove ball bearing (20) from access cover, first remove and discard snap ring (21). Support access cover on arbor press and press ball bearing from cover. Apply pressure to outer bearing race during pressing operation. Do not drive bearing from cover using a hammer and drift, as damage to bearing is likely to result.

To reassemble ball bearing, reverse order of disassembly. Install new snap ring (21). Inspect rollers (4) and roller bearing race (30) and replace if badly pitted, scored or worn beyond fitting specifications.

To remove a badly worn bearing race, remove retainer ring (31) and roller bearing washer (32). Discard ring (31). Heat case surrounding bearing and drift race inward from outside of case. Press new race in until shoulder is against case inner surface. See transmission "SPECIFICATIONS," Section 4 for correct fit of mainshaft right side roller bearing.

4-27
ASSEMBLING TRANSMISSION

Install retainer lock (15, Figure 4-25) and retainer (14) in access cover. Insert springs (8) into slots of support (7).

1970-71 Models: Position carrier (6) in support (7). Insert right and left shifter pawls and springs (9) into their respective sockets, top ratchet engaging grooves facing each other. Hold spring loaded pawls in place with a thin spoke or knife blade and assemble cam (5), carrier (6) and support (7) with shims (7A) (if used). With Tru-arc pliers, install washer (4) and new retaining ring (3). Hold down one pawl at a time with knife blade and operate cam (5) to make sure pawls are free and correctly engage with ratchet of cam (5).

1972 and Later Models: Install pawls (9A) on pawl carrier (6A), using spacers (9C) so that holes for spring hooks will be in alignment. One spacer will be on outside of pawl and the other will be underneath pawl as shown in Figure 4-26. Install pawl retaining ring (9D) and spring (9B). Assemble shifter cam (5) in pawl carrier (6A) retracting pawls one at a time to do so. Install assembly into support (7) with ear of carrier (6A) between ends of springs (8). Install washer (4) and new retaining ring (3). Operate cam (5) to make sure pawls operate correctly engaging with ratchet of cam.

Shims (7A) are used if necessary to adjust height of shifter assembly to ensure correct operation of shifter forks.

See Figure 4-27. Supporting access cover on arbor press table, install clutch gear (10) into ball bearing. Clutch gear must press in tightly and shoulder must rest against bearing inner race. Assemble thrust washer (16), second gear (15) and gear spacer washer (14) on countershaft (17). Assemble drive gear (13) on shaft. Make sure gear (15) turns free. Install countershaft group in access cover, install mainshaft second gear (1) and shifter fork (10, Figure 4-25). Slip fork on shaft (16, Figure 4-25) finger roller stud positioned towards access cover and fork finger engaged in running slot of gear. Repeat operation with second fork and countershaft third gear (12), finger roller stud positioned away from access cover.

Install finger rollers (11, Figure 4-25) on shifter forks and insert cam follower (12) and spring (13) in follower (14). Be sure cam follower (12) is free in cam follower retainer (14).

Assemble shifting mechanism to access cover with cap screw (1) and retainer ring (2, Figure 4-25). In some operation, engage shifter fork finger rollers in slot of shifter cam (5).

Install the following parts on mainshaft (2, Figure 4-27). Low gear (5), third gear (8), third gear washer (7) and retainer ring (6). Always replace ring (6). Use Sleeve, Part No. 96396-52, to install ring (6) in groove of mainshaft. This tool prevents the retainer ring from spreading out of shape during the assembly operation.

Insert assembled mainshaft group in second gear (1) and clutch gear (10). Select the thinnest low gear variable washer (11) available and position against shoulder on countershaft. Position low gear (18) on shaft and with a feeler gauge check clearance between clutch faces of gears (18 and 12). Use variable size washers to attain .038 to .056 in. clearance. Washers (11) are available in .065, .075, .085, .100 in. thickness.

See Figure 4-27. With all parts assembled to access cover, except variable size washers (3 and 19), rollers (4), washer (32) and retainer ring (31), check operation of transmission by shifting through range of gears several times. Then shift into neutral position (between first and second gear positions), and with a feeler gauge check clearance between clutch faces of gears (15 and 12). If correct clearance of .038 to .056 in. is not obtained, it is possible that shifter forks (10) are bent and should be replaced.

Using a feeler gauge, check clearance between clutch bore of gears (10 and 8) and (8 and 1). If correct clearance of .043 to .083 in. is not obtained, it is possible that the shifter forks are bent or worn and should be replaced.

If correct clearance cannot be obtained with standard size forks and spacer washers, .020 or +.020 size shifter forks are available to space countershaft third or mainshaft second gears individually.

Shims (7A, Figure 4-25) should be employed to space both mainshaft 2nd and countershaft 3rd gears away from access cover if necessary.

Make a final check for proper gear engagement by performing the following procedure.

With the transmission completely assembled (not in crankcase, however), hold on to shifter cam (5, Figure 4-25 so that cam follower (12) does not complete the shift. Then, shift the transmission into all four gears (upshift and downshift). In each case, check to see that the sliding gears go into their respective mating gears at least 50%, with 25% being the minimum allowable into low gear. If the sliding
1. Mainshaft second gear
2. Transmission mainshaft
3. Mainshaft thrust washer
 (variable thickness) —
 Controls end play of
 mainshaft
4. Transmission mainshaft
 roller (23)
5. Mainshaft low gear
6. Mainshaft third gear
 retainer ring
7. Mainshaft third gear washer
8. Mainshaft third gear
9. Access cover
10. Clutch gear
11. Countershaft low gear washer
 (2 reg., 1974 and later)
12. Countershaft third gear
13. Countershaft drive gear
14. Countershaft gear spacer
15. Countershaft second gear
16. Countershaft second gear thrust washer
17. Transmission countershaft
18. Countershaft low gear
 (1972 and earlier)
18A. Countershaft low gear
 (1973 and later)
19. Countershaft low gear washer
 (variable thickness) —
 Controls end play of
 countershaft
20. Mainshaft ball bearing
21. Mainshaft ball bearing
 snap ring (2)
22. Countershaft oiler plug
23. Countershaft low gear
 bushing
24. Clutch gear oil seal (1970 only)
25. Clutch hub nut O-ring
 (1970 only)
26. Clutch gear oil seal extension
 (1970 only)
27. Clutch gear bushing
28. Clutch gear needle roller bearing
29. Mainshaft thrust washer
30. Mainshaft roller bearing race
31. Mainshaft roller bearing
 retainer ring
32. Mainshaft roller bearing washer
33. Countershaft bearing —
 closed end
34. Countershaft bearing — open end

Figure 4-27. Countershaft and Mainshaft Group - Exploded View
gears do not engage properly, inspect and replace any or the following parts if found defective: (5), (6 or 6A), (7) access cover, (9 or 9A).

If any parts are replaced, recheck clearances again as a final step.

ESTABLISHING MAINSHAFT AND COUNTERSHAFT END PLAY
Temporarily select the thinnest variable low gear washer(s) (19, Figure 4-27) and mainshaft thrust washer (3) and install in their respective positions. Install washer (3), ear of washer down as positioned in transmission compartment.

Temporarily install access cover to crankcase with all transmission parts. Carefully align cover on dowel pins and with a rawhide mallet, gently tap cover into position. Secure access cover with four capscrews (2, Figure 4-22).

Using a dial indicator, check end play of mainshaft (2), gauging from sprocket side of shaft. With clutch assembled, and play should be checked with clutch disengaged. With clutch disassembled, mainshaft end play must be checked with a load on the inner race of the access cover as follows: Place three Clutch Shell Spacers, Part No. 33442-77 or 37753-76 (or a piece of pipe of equal size), on the clutch gear shaft. Using Clutch Spring Compressor Tool, Part No. 97178-71, load the access cover inner race with a load equal to force needed to compress the clutch springs. With load on the inner race, move the mainshaft back and forth and note reading of the dial indicator.

To check countershaft end play, oiler plug (22, Figure 4-27) must be removed. Bend a discarded wheel spoke and wedge in countershaft oil hole. With dial indicator mounted on end of countershaft, move countershaft back and forth with bent spoke and note reading of the dial indicator.

If end play of mainshaft or countershaft is not within specified limits (see Transmission "SPECIFICATIONS"), remove access cover and install correct size variable thickness washers (3 and 19, Figure 4-27) to achieve correct fit.

Variable size washers are available for the mainshaft in sizes .030 in. to .085 in. and for the countershaft in sizes .020 in. to .075 in.

With mainshaft and countershaft end play established, center the gear shifter lever arm shaft (17, Figure 4-25), so that it will engage with gear shifter pawl yoke when access cover is in place. Make sure lever arm is correctly engaged with shifter pawl yoke by lightly rotating countershaft (17) and testing for engagement.

With transmission and access cover assembled, install 23 mainshaft rollers (4, Figure 4-27) in bearing race using grease to hold in position. Install roller bearing washer and roller bearing retainer ring (32 and 31).

MAINSHAFT SPROCKET, STARTER AND CLUTCH ASSEMBLIES (Figure 4-21)
Install foot shift lever and shift transmission into fourth gear. Install gasket (6), oil seal and retainer (5) and screws (4). Do not tighten screws (4). Temporarily position sprocket (3) on mainshaft to correctly locate retainer (5). Remove sprocket (3) and securely tighten screws (4). Reassemble sprocket, lockwasher (2) and mainshaft nut (1). Tighten nut (1) and bend ears of lockwasher (2) against head of nut (1). Install release rod end, and chain.

Install starter as described in "STARTER,"

Install clutch as described in "CLUTCH."

Fill transmission compartment with engine oil as described in "LUBRICATION," paragraph following.

LUBRICATION
With motorcycle standing straight up, remove oil filler plug and oil level plug. The oil filler plug is located near the top of the chain case cover and the oil level plug is located near the bottom of the chain case cover.

Refill transmission with same grade of oil used in engine. Add oil until it begins to overflow through oil level hole. Permit excess oil to flow from oil level hole until it ceases to run. This is correct oil level. Reinsert and tighten oil level and oil filler plug.

Drain transmission and refill to correct level with fresh, clean oil once each year or every 5000 miles, whichever comes first. If transmission should become submerged in water, drain immediately and refill with clean oil to the correct level.
Pin spanner wrench for shaft nut.

Part No. 94567-55 Compensating Sprocket Shaft Nut Wrench

Fits clutch hub nut.

Part No. 94647-52 Clutch Hub Nut Wrench

Used in combination with claw puller for pulling close fitting gears or bearings.

Part No. 95637-48 Wedge Attachment for Claw Puller

Used to pull clutch hub from clutch gear spline.

Part No. 95680-52A Clutch Hub Puller

Used to remove sprocket shaft extension.

Part No. 96015-56 Sprocket Shaft Extension Puller

Special pliers for removing and replacing lock rings.

Part No. 96017-61 External Lock Ring Pliers

Screws onto clutch gear end and pulls transmission access cover which is a press fit on two dowels.

Part No. 95560-57 Transmission Access Cover Puller
Special pliers for removing and replacing lock rings.
96215-49 Small
96216-49 Large

Used to hold clutch shell from turning when engine sprocket, clutch hub and rear chain front sprocket nuts are removed.

Part No. 97175-55 Clutch Lock Plate (1970)
97173-71 Clutch Lock Plate (1971 & Later)

For installation of mainshaft 3rd gear retaining ring - to ensure retaining ring in not spread too much.

Part No. 96396-52 Mainshaft 3rd Gear Retaining Ring Sleeve

Locks the engine sprocket teeth and the clutch sprocket teeth to prevent rotation when nuts are removed or installed.

Part No. 97200-55 Sprocket Locking Link (1976 & Earlier)

For installing flywheel assembly into crankcase Timken bearing.

Part No. 97081-54 Sprocket Shaft Bearing Tool

Used to loosen and tighten clutch adjusting screw locknut, also to unscrew access hole plug.

Part No. 94580-71 Clutch Adjusting Nut Wrench - 1971 & Later Fits 13/16" Hex

Used to install clutch hubs, clutch gear extension, transmission mainshaft sprocket.

Part No. 97170-55A Hub Installing Tool

Part No. 97178-71 Clutch Spring Compressor (1971 & Later)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>5-1</td>
</tr>
<tr>
<td>Wiring</td>
<td>5-3</td>
</tr>
<tr>
<td>Switches</td>
<td>5-17</td>
</tr>
<tr>
<td>Lamps</td>
<td>5-21</td>
</tr>
<tr>
<td>Generator</td>
<td>5-23</td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>5-29</td>
</tr>
<tr>
<td>Ignition Coil</td>
<td>5-37</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>5-39</td>
</tr>
<tr>
<td>Regulator</td>
<td>5-41</td>
</tr>
<tr>
<td>Battery</td>
<td>5-49</td>
</tr>
<tr>
<td>Horn</td>
<td>5-51</td>
</tr>
<tr>
<td>Starter Motor</td>
<td>5-53</td>
</tr>
<tr>
<td>Tools</td>
<td>5-57</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition</td>
<td>Coil, double secondary outlet</td>
</tr>
<tr>
<td>Spark timing</td>
<td></td>
</tr>
<tr>
<td>Breaker points setting</td>
<td>.018 in. gap</td>
</tr>
<tr>
<td>Spark occurs at</td>
<td>40° ± 2.5°</td>
</tr>
<tr>
<td>Cylinder variance</td>
<td>Not to exceed 2.5°</td>
</tr>
<tr>
<td>Spark plug</td>
<td>Harley-Davidson No. 4 (standard)</td>
</tr>
<tr>
<td></td>
<td>Harley-Davidson No. 4R (resistor type)</td>
</tr>
<tr>
<td>Size</td>
<td>14 mm</td>
</tr>
<tr>
<td>Gap</td>
<td>.025-.030 in.</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>30 ft-lbs</td>
</tr>
<tr>
<td>Battery</td>
<td>XLH: 12 volt, 32 amp hr.</td>
</tr>
<tr>
<td></td>
<td>XLCH: 12 volt, 7 amp hr.</td>
</tr>
<tr>
<td>Starter</td>
<td>XLH: Elect., 12 volt Bendix Drive</td>
</tr>
<tr>
<td></td>
<td>XLCH: Manual</td>
</tr>
<tr>
<td>Generator</td>
<td>Two brush shunt, external regulator control</td>
</tr>
<tr>
<td>Regulator</td>
<td>Current and voltage control</td>
</tr>
<tr>
<td>Horn</td>
<td>Electric vibrating</td>
</tr>
<tr>
<td>Lights</td>
<td></td>
</tr>
<tr>
<td>Headlamp (sealed beam)</td>
<td>35W lower, 45W upper</td>
</tr>
<tr>
<td>Stop light</td>
<td>32 C.P.</td>
</tr>
<tr>
<td>Tail light</td>
<td>4 C.P.</td>
</tr>
</tbody>
</table>
KEY FOR WIRING DIAGRAM (Figure 5-1)

1. Fork terminal board (terminals 1 to 5)
2. Headlamp dimmer switch
3. Horn switch
4. Generator "F" and "A" terminals
5. Regulator
 "BAT" or B terminal
 "GEN" or D
 "F" or DF terminal
6. Overload circuit breaker
7. Tail lamp
8. Junction terminal board
 (4 terminals)
9. Starter motor (XLH)
10. Starter solenoid (XLH)
11. Battery
12. Rear stoplight switch
13. Ignition coil
14. Ignition circuit breaker
15. Ignition - light switch
16. Oil signal light switch
21. Starter button (XLH)
22. Horn
23. Speedometer light
24. Oil signal light
25. High beam indicator light
26. Generator indicator light
27. Headlamp
28. Tachometer light
29. Direction signal switch
30. Direction signal flasher
31. Left front direction lamp
32. Right front direction lamp
33. Left rear direction lamp
34. Right rear direction lamp
35. Front stoplight switch
36. Crankcase bolt
37. Connector
38. License lamp
39. Starter Relay (XLH)

KEY TO COLOR CODE

- BLACK
- WHITE
- ORANGE
- RED
- GREEN
- YELLOW
- VIOLET
- BLUE
- BROWN
- GRAY

Figure 5-1. Wiring Diagram, 1970-71 Model XLH
KEY FOR WIRING DIAGRAMS (Figures 5-2 and 5-2A)

1. Fork terminal board (terminals 1 to 5)
2. Headlamp dimmer switch
3. Horn switch
4. Generator "F" and "A" terminals
5. Regulator
 "BAT" or B terminal
 "GEN" or D terminal
 "F" or DF terminal
6. Overload circuit breaker
7. Tail lamp
8. Junction terminal board
 (4 terminals)
9. Starter motor (XLH)
10. Starter solenoid (XLH)
11. Battery
12. Rear stoplight switch
13. Ignition coil
14. Ignition circuit breaker
15. Ignition - light switch
16. Oil signal light switch
17. Starter button (XLH)
18. Horn
19. Speedometer light
20. Oil signal light
21. High beam indicator light
22. Generator indicator light
23. Headlamp
24. Tachometer light
25. Direction signal switch
26. Direction signal flasher
27. Left front direction lamp
28. Right front direction lamp
29. Left rear direction lamp
30. Right rear direction lamp
31. Front stoplight switch
32. Crankcase bolt
33. Connector
34. License lamp
35. Starter Relay (XLH)

KEY TO COLOR CODE

<table>
<thead>
<tr>
<th>Color</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BLACK</td>
</tr>
<tr>
<td>W</td>
<td>WHITE</td>
</tr>
<tr>
<td>O</td>
<td>ORANGE</td>
</tr>
<tr>
<td>R</td>
<td>RED</td>
</tr>
<tr>
<td>G</td>
<td>GREEN</td>
</tr>
<tr>
<td>Y</td>
<td>YELLOW</td>
</tr>
<tr>
<td>V</td>
<td>VIOLET</td>
</tr>
<tr>
<td>BE</td>
<td>BLUE</td>
</tr>
<tr>
<td>BN</td>
<td>BROWN</td>
</tr>
<tr>
<td>GY</td>
<td>GRAY</td>
</tr>
</tbody>
</table>
Figure 5-2. Wiring Diagram, 1970-71 Model XLCH

Figure 5-2A. Wiring Diagram, 1972 Model XLH (Standard Seat)
KEY FOR WIRING DIAGRAMS (Figures 5-2B, 5-2C and 5-2D)

1. Fork terminal board (terminals 1 to 5)
2. Headlamp dimmer switch
3. Horn switch
4. Generator "F" and "A" terminals
5. Regulator
 "BAT" or B terminal
 "GEN" or D
 "F" or DF terminal
6. Overload circuit breaker
7. Tail lamp
8. Junction terminal board
 (4 terminals)
9. Starter motor (XLH)
10. Battery
11. Rear stoplight switch
12. Ignition coil
13. Ignition circuit breaker
14. Ignition - light switch
15. Oil signal light switch
16. Starter button (XLH)
17. Horn
18. Speedometer light
19. Oil signal light
20. High beam indicator light
21. Generator indicator light
22. Headlamp
23. Tachometer light
24. Direction signal switch
25. Direction signal flasher
26. Left front direction lamp
27. Right front direction lamp
28. Left rear direction lamp
29. Right rear direction lamp
30. Front stoplight switch
31. Crankcase bolt
32. Connector
33. License lamp
34. Starter Relay (XLH)

KEY TO COLOR CODE

<table>
<thead>
<tr>
<th>Code</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Black</td>
</tr>
<tr>
<td>W</td>
<td>White</td>
</tr>
<tr>
<td>D</td>
<td>Orange</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
</tr>
<tr>
<td>G</td>
<td>Green</td>
</tr>
<tr>
<td>Y</td>
<td>Yellow</td>
</tr>
<tr>
<td>V</td>
<td>Violet</td>
</tr>
<tr>
<td>BK</td>
<td>Blue</td>
</tr>
<tr>
<td>BN</td>
<td>Brown</td>
</tr>
<tr>
<td>GY</td>
<td>Gray</td>
</tr>
</tbody>
</table>

Figure 5-2B. Wiring Diagram, 1972 Model XLCH (Standard Seat)
KEY FOR WIRING DIAGRAMS (Figures 5-2E and 5-2F)

1. Fork terminal board (terminals 1 to 5)
2. Headlamp dimmer switch
3. Horn switch
4. Generator "F" and "A" terminals
5. Regulator
 "BAT" or B+ terminal
 "GEN" or D+
 "F" or DF terminal
6. Tail lamp
7. Starter motor
8. Starter solenoid
9. Battery
10. Rear stoplight switch
11. Ignition coil
12. Ignition breaker (timer)
13. Ignition - light switch
14. Oil signal light switch
15. Starter button
16. Horn
17. Speedometer light
18. Oil signal light
19. High beam indicator light
20. Generator indicator light
21. Headlamp
22. Tachometer light
23. Front stoplight switch
24. Crankcase bolt
25. Starter relay
26. Engine stop switch
27. Rear harness connector
28. Lighting circuit breaker
29. Accessory circuit breaker
30. Ignition circuit breaker
31. Connector
32. Frame bolt
33. Right direction signal switch
34. Left direction signal switch
35. Direction signal flasher
36. Left front direction lamp
37. Right front direction lamp
38. Left rear direction lamp
39. Right rear direction lamp

KEY TO COLOR CODE

<table>
<thead>
<tr>
<th>Code</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BLACK</td>
</tr>
<tr>
<td>W</td>
<td>WHITE</td>
</tr>
<tr>
<td>O</td>
<td>ORANGE</td>
</tr>
<tr>
<td>R</td>
<td>RED</td>
</tr>
<tr>
<td>G</td>
<td>GREEN</td>
</tr>
<tr>
<td>Y</td>
<td>YELLOW</td>
</tr>
<tr>
<td>V</td>
<td>VIOLET</td>
</tr>
<tr>
<td>B</td>
<td>BLUE</td>
</tr>
<tr>
<td>BN</td>
<td>BROWN</td>
</tr>
<tr>
<td>GRY</td>
<td>GRAY</td>
</tr>
<tr>
<td>TNO</td>
<td>TAN</td>
</tr>
</tbody>
</table>
KEY FOR WIRING DIAGRAMS (Figures 5-2G and 5-2H)

1. Headlamp housing
2. Socket plug combination
3. Socket plug combination
4. Socket plug combination
5. Wiring harness
6. Headlamp dimmer switch
7. Horn switch
8. Generator "F" and "A" terminals
9. Regulator
 "BAT" or B terminal
 "GEN" or D+
 "F" or DF terminal
10. Tail lamp
11. Starter motor
12. Starter solenoid
13. Battery
14. Rear stoplight switch
15. Ignition coil
16. Ignition breaker (timer)
17. Ignition - light switch
18. Oil signal light switch
19. Starter button
20. Horn
21. Speedometer light
22. Oil signal light
23. High beam indicator light
24. Generator indicator light
25. Headlamp socket
26. Tachometer light
27. Front stoplight switch
28. Crankcase bolt
29. Starter relay
30. Engine stop switch
31. Rear harness connector
32. Lighting circuit breaker
33. Accessory circuit breaker
34. Ignition circuit breaker
35. Connector
36. Right direction signal switch
37. Left direction signal switch
38. Direction signal flasher
39. Left front direction lamp
40. Right front direction lamp
41. Left rear direction lamp
42. Right rear direction lamp

KEY TO COLOR CODE

- BLACK
- WHITE
- ORANGE
- RED
- GREEN
- YELLOW
- VIOLET
- BLUE
- BROWN
- GRAY
- TAN
Figure 5-2G. Wiring Diagram, 1975 and 1976 Model XL

Figure 5-2H. Wiring Diagram, 1975 and 1976 Model XLCH
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Headlamp housing</td>
</tr>
<tr>
<td>2</td>
<td>Socket plug combination</td>
</tr>
<tr>
<td>3</td>
<td>Socket plug combination</td>
</tr>
<tr>
<td>4</td>
<td>Socket plug combination</td>
</tr>
<tr>
<td>5</td>
<td>Wiring harness</td>
</tr>
<tr>
<td>6</td>
<td>Headlamp dimmer switch</td>
</tr>
<tr>
<td>7</td>
<td>Horn switch</td>
</tr>
<tr>
<td>8</td>
<td>Generator "F" and "A" terminals</td>
</tr>
<tr>
<td>9</td>
<td>Regulator</td>
</tr>
<tr>
<td></td>
<td>"BAT" or B+ terminal</td>
</tr>
<tr>
<td></td>
<td>"GEN" or D+</td>
</tr>
<tr>
<td></td>
<td>"F" or DF terminal</td>
</tr>
<tr>
<td></td>
<td>"GND" terminal</td>
</tr>
<tr>
<td>10</td>
<td>Tail lamp</td>
</tr>
<tr>
<td>11</td>
<td>Starter motor</td>
</tr>
<tr>
<td>12</td>
<td>Starter solenoid</td>
</tr>
<tr>
<td>13</td>
<td>Battery</td>
</tr>
<tr>
<td>14</td>
<td>Rear stoplight switch</td>
</tr>
<tr>
<td>15</td>
<td>Ignition coil</td>
</tr>
<tr>
<td>16</td>
<td>Ignition breaker (timer)</td>
</tr>
<tr>
<td>17</td>
<td>Ignition – light switch</td>
</tr>
<tr>
<td>18</td>
<td>Oil signal light switch</td>
</tr>
<tr>
<td>19</td>
<td>Starter button</td>
</tr>
<tr>
<td>20</td>
<td>Horn</td>
</tr>
<tr>
<td>21</td>
<td>Speedometer light</td>
</tr>
<tr>
<td>22</td>
<td>Oil signal light</td>
</tr>
<tr>
<td>23</td>
<td>High beam indicator light</td>
</tr>
<tr>
<td>24</td>
<td>Generator indicator light</td>
</tr>
<tr>
<td>25</td>
<td>Headlamp socket</td>
</tr>
<tr>
<td>26</td>
<td>Tachometer light</td>
</tr>
<tr>
<td>27</td>
<td>Front stoplight switch</td>
</tr>
<tr>
<td>28</td>
<td>Crankcase bolt (under battery)</td>
</tr>
<tr>
<td>29</td>
<td>Starter relay</td>
</tr>
<tr>
<td>30</td>
<td>Engine stop switch</td>
</tr>
<tr>
<td>31</td>
<td>Rear harness connector</td>
</tr>
<tr>
<td>32</td>
<td>Lighting circuit breaker</td>
</tr>
<tr>
<td>33</td>
<td>Accessory circuit breaker</td>
</tr>
<tr>
<td>34</td>
<td>Ignition circuit breaker</td>
</tr>
<tr>
<td>35</td>
<td>Connector</td>
</tr>
<tr>
<td>36</td>
<td>Right direction signal switch</td>
</tr>
<tr>
<td>37</td>
<td>Left direction signal switch</td>
</tr>
<tr>
<td>38</td>
<td>Direction signal flashe</td>
</tr>
<tr>
<td>39</td>
<td>Left front direction lamp</td>
</tr>
<tr>
<td>40</td>
<td>Right front direction lamp</td>
</tr>
<tr>
<td>41</td>
<td>Left rear direction lamp</td>
</tr>
<tr>
<td>42</td>
<td>Right rear direction lamp</td>
</tr>
<tr>
<td>43</td>
<td>Tag, brown (R)</td>
</tr>
<tr>
<td>44</td>
<td>Tag, violet (L)</td>
</tr>
<tr>
<td>45</td>
<td>Bolt to frame</td>
</tr>
<tr>
<td>46</td>
<td>Main circuit breaker</td>
</tr>
<tr>
<td>47</td>
<td>Handlebar bolt</td>
</tr>
</tbody>
</table>

KEY TO COLOR CODE

- **B**: BLACK
- **W**: WHITE
- **O**: ORANGE
- **R**: RED
- **G**: GREEN
- **Y**: YELLOW
- **V**: VIOLET
- **BF**: BLUE
- **BN**: BROWN
- **GY**: GRAY
- **TN**: TAN
KEY FOR WIRING DIAGRAMS (Figures 5-2K and 5-2L)

1. Headlamp housing
2. Socket-plug combination
3. Socket-plug combination
4. Socket-plug combination
5. Wiring harness
6. Headlamp dimmer switch
7. Horn switch
8. Generator "F" and "A" terminals
9. Regulator
10. Tail lamp
11. Starter motor
12. Starter solenoid
13. Battery
14. Rear stoplight switch
15. Ignition coil
16. Ignition breaker (timer)
17. Ignition – light switch
18. Oil signal light switch
19. Starter button
20. Horn
21. Speedometer light
22. Oil signal light
23. High beam indicator light
24. Generator indicator light
25. Headlamp socket
26. Tachometer light
27. Front stoplight switch
28. Crankcase bolt (under battery)
29. Starter relay
30. Engine stop switch
31. Tail lamp harness connector
32. Lighting circuit breaker
33. Accessory circuit breaker
34. Ignition circuit breaker
35. Connector
36. Right turn signal switch
37. Left turn signal switch
38. Turn signal flasher
39. Left front turn signal lamp
40. Right front turn signal lamp
41. Left rear turn signal lamp
42. Right rear turn signal lamp
43. Tag, brown (R)
44. Tag, violet (L)
45. Bolt to frame
46. Main circuit breaker
47. Handlebar bolt
48. Diode
49. Rear turn signal lamp harness connector
50. Regulator connector

KEY TO COLOR CODE

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BLACK</td>
</tr>
<tr>
<td>W</td>
<td>WHITE</td>
</tr>
<tr>
<td>O</td>
<td>ORANGE</td>
</tr>
<tr>
<td>R</td>
<td>RED</td>
</tr>
<tr>
<td>G</td>
<td>GREEN</td>
</tr>
<tr>
<td>Y</td>
<td>YELLOW</td>
</tr>
<tr>
<td>V</td>
<td>VIOLET</td>
</tr>
<tr>
<td>RE</td>
<td>BLUE</td>
</tr>
<tr>
<td>BN</td>
<td>BROWN</td>
</tr>
<tr>
<td>BV</td>
<td>GRAY</td>
</tr>
<tr>
<td>TAN</td>
<td>TAN</td>
</tr>
</tbody>
</table>
Figure 5-2K. Wiring Diagram, 1978 Model XLH

Figure 5-2L. Wiring Diagram, 1978 Model XLCH
SWITCHES

BUTTON SWITCH (Figure 5-3)
This type switch is used for momentary closing of circuits to horn, magneto or starting motor and is located on handlebar. Terminal has either one or two wires.

To disassemble switch, remove screws (1, Figure 5-3) from housing. Pull remaining parts from housing as an assembly.

To replace the switch wires, unsolder or cut wires from contacts. The wire ends should have about 1/4 inch of insulation stripped off.

Lead one wire through cup, lower contact, plastic washer and spring to upper contact. Be sure parts are arranged as shown. Insert one wire end through center of upper contact, spread strands out flat over contact and solder. Lead second wire through cup and solder to lower contact.

Insert button and assembled parts in housing and reinstall switch on handlebar.

HANDLEBAR SWITCH ASSEMBLY - 1973 AND LATER (Figure 5-4, 5-5)
The left handlebar switch assembly, contains a rocker arm switch (Headlamp hi-lo beam) and two pushbutton switches (Horn and left turn signal). The right handlebar switch assembly contains a rocker arm switch (emergency engine cut-off) and two pushbutton switches (engine start and right turn signal). Individual rocker arm and pushbutton switches can be replaced if defective.

To replace individual switches, remove four screws (1) and pull off cover (2) assemblies. Remove screws (3) and rocker switches (4 and 5) or screws (6), retainer (7) and pushbutton switch (8) as needed. Reassembly is the reverse of disassembly.

Figure 5-3. Button Switch (1970 to 1972) - Exploded View

1. Screw
2. Switch housing cover
3. Screw
4. Rocker switch (Hi-Lo)
5. Rocker switch (Run-Off)
6. Screw
7. Retainer
8. Pushbutton switch
9. Rubber cap
10. Stop light switch
11. Washer

Figure 5-4. Handlebar Switch Assembly Left (1973 and Later)

Figure 5-5. Handlebar Switch Assembly Right (1973 and Later)
STOPLAMP FRONT BRAKE SWITCH
(Figure 5-5)

To replace stop light switch in right handlebar assembly, remove cover (2) and rubber cap (9). Disconnect wires and unscrew switch (10) and washer (11) from housing. Switch parts are not serviceable. Switch must be replaced as a unit.

IGNITION - LIGHT SWITCH (Figure 5-6)

The combination ignition - light switch is a three position switch. The vertical position is OFF. For U.S.A. operation, the next two clockwise positions are ignition and headlight. Key will lock ignition in OFF position only. Switch must be replaced as a unit.

STARTER SOLENOID SWITCH
(Figure 5-7)

Solenoid switches are designed to close and open electrical circuits electro-magnetically. Switches of this type consist basically of contacts and a winding around a hollow cylinder containing a movable plunger. When the winding is energized by the battery through an external control circuit, the magnetism produced pulls the plunger into the coil. The contact disc attached to the plunger moves against two main switch contacts closing the circuit.

Solenoid switch individual parts are replaceable as shown in exploded view, Figure 5-7.

1. Roll pin
2. Spring retainer
3. Spring
4. Rubber boot
5. Roll pin
6. Solenoid plunger
7. Return spring
8. Gasket
9. Spacer
10. Starter solenoid switch
11. Lockwasher and nut
12. Lockwasher and nut
13. Lockwasher and bolt
14. Rubber cover

Figure 5-6. Ignition Light Switch

Figure 5-7. Solenoid - Exploded View
The control circuit wire from handlebar starter button is connected to small terminal stud (2, Figure 5-9). Battery cable must be connected to the large, longest stud (3, Figure 5-9) and starter motor cable is connected to the large, shorter stud (1, Figure 5-9). If cables are reversed, solenoid coils will remain in circuit and drain battery.

When it is suspected that a solenoid switch is defective, tests should be made of the solenoid coil winding and continuity through the main switch when contacts are in closed position. Using the test circuit described, these two tests can be made simultaneously.

With solenoid disconnected from control circuit, battery and motor and with plunger in place, make test circuit connections as follows: (See Figure 5-8.)

![Figure 5-8. Test Circuit](image)

Since solenoid coil requires 12 volts to actuate plunger closing main switch contacts, use a 12 volt battery. Leads A and B are connected to terminals 1 and 2 (coil terminals) to actuate solenoid. A sharp click should be heard from the solenoid switch when making this condition. No click or a heavy spark at the terminals when connecting wires would indicate either an open or short in the solenoid winding and solenoid switch must be replaced. If the solenoid winding checks good and plunger does close main switch contacts, there is still a possibility contacts are badly burned or pitted and will not pass heavy current.

To test continuity on the main contacts, connect a test clip of at least 21 CP (12 volts) between terminal 3 and battery positive post and repeat previous test. A bright glow of the test bulb indicates main switch contacts are passing current.

STARTER RELAY SWITCH

The starter relay switch is a solenoid switch controlled by the starter button on the right handlebar. Its purpose is to increase the current supply for operating the starter solenoid. Internal wiring diagram is shown in Figure 5-10.

Figure 5-10 shows a test circuit using a 12 volt battery and stop lamp bulb. Contacts should close and bulb should light when connection is made at positive post of battery and should go out when connection is broken. Switch parts are not serviceable. Switch must be replaced as a unit.

![Figure 5-10. Starter Relay Internal Wiring Diagram and Test Circuit](image)

CIRCUIT BREAKERS

To protect the motorcycle wiring, there are four circuit breakers: main, lighting, accessory and ignition.

They are located on the frame in front of the battery and are accessible by removal of the seat and/or battery.

Each of these breakers is self-resetting and automatically returns steady power to the circuit when an electrical fault that causes it to trip is found and corrected. If the electrical fault is not found and corrected, the breaker cycles on and off causing the motorcycle to operate erratically and eventually the battery will lose its charge.

5-19
HEADLAMP

The headlamp is a sealed beam type, specially designed and made for Harley-Davidson motorcycles. When replacement is required, use only the prescribed sealed beam unit. If either filament burns out, or the lens breaks, the entire unit must be replaced.

To remove sealed beam unit, remove screw from outer clamping ring. Pry unit from rubber mounting and pull connector block from unit prongs.

Assembly is the reverse order of disassembly. Be sure connector block contacts are clean to ensure a good electrical contact. After final assembly, readjust headlamp as described under “ADJUSTING BEAM.”

Headlamp mounting nut is located under snap plug on mounting bracket.

ADJUSTING BEAM

To get the greatest efficiency from the headlamp and to meet the requirements of the law, correctly adjust headlamp beam according to the following instructions.

Draw a horizontal line on a wall or screen exactly the same height as the center of the headlamp to be checked and adjusted. Then, position the motorcycle on a level surface with headlamp approximately 25 feet away from the test pattern. Have a rider sit on the motorcycle to simulate actual running conditions. Motorcycle must be vertical with front wheel in straight ahead alignment and tires correctly inflated. Aim the headlamp directly at the screen and turn on the light switch. Set beam selector switch on the high beam position, and check beam for height and direction.

The top of the main beam of light should register even with, but no higher than the horizontal line of the test pattern.

To aim beam, loosen the headlamp mounting nut and position the lamp to correctly adjust the beam of light in relation to the horizontal line. At the same time, turn the headlamp right or left to direct the beam of light straight ahead. Tighten the clasp nut after the lamp is correctly adjusted.

BULB CHART

<table>
<thead>
<tr>
<th>Lamp Description</th>
<th>Bulbs Rqd.</th>
<th>Candle Power or Wattage</th>
<th>Harley-Davidson Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headlamp</td>
<td>1</td>
<td>45 Watts</td>
<td>67717-65</td>
</tr>
<tr>
<td>Hi Beam</td>
<td></td>
<td>35 Watts</td>
<td></td>
</tr>
<tr>
<td>Lo Beam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail Lamp</td>
<td>1</td>
<td>4 C.P.</td>
<td>68165-64</td>
</tr>
<tr>
<td>Tail Lamp</td>
<td></td>
<td>32 C.P.</td>
<td></td>
</tr>
<tr>
<td>Stoplight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator/Oil Pressure</td>
<td>1</td>
<td>4 C.P.</td>
<td>68536-70 (1970 to early 1972)</td>
</tr>
<tr>
<td>Signal Lights</td>
<td></td>
<td></td>
<td>68536-72 (late 1972 to 1974)</td>
</tr>
<tr>
<td>High Beam Indicator</td>
<td>1</td>
<td>2 C.P.</td>
<td>71092-68 (1970 to 1974)</td>
</tr>
<tr>
<td>Speedometer/Tachometer Lights</td>
<td>1</td>
<td>2 C.P.</td>
<td>71090-64</td>
</tr>
<tr>
<td>ACCESSORIES</td>
<td>4</td>
<td>3 C.P.</td>
<td>68166-64 (1970 to early 1973)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 C.P.</td>
<td>68572-64A (late 1973 to 1978)</td>
</tr>
</tbody>
</table>